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INTRODUCTION

Under alternative robotic mechanical systems we

understand here:

 Parallel Robots;

 Multifingered hands;

 Walking Machines;

 Rolling Robots.

Parallel manipulators are

composed of kinematic

chains with closed subchains.
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General six-dof parallel manipulator
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We can distinguish two platforms:

 One fixed to the ground ℬ
 One capable of moving arbitrarily within its

workspace ℳ.

The moving platform is connected to the fixed platform

through six legs, each being regarded as a six-axis serial

manipulator whose base is ℬ
and whose end-effector is ℳ.

The whole leg is composed of six links coupled through

six revolutes.
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Six-dof flight simulator: (a) general layout; (b) geometry of its two

platforms
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In this figure, the fixed platform ℬ is a regular hexagon,

while the moving platform ℳ is an equilateral triangle.

Moreover, ℬ is connected to ℳ by means of six serial

chains, each comprising five revolutes and one prismatic

pair. Three of the revolutes bear concurrent axes, and

hence, constitute a spherical joint, while two more have axes

intersecting at right angles, thus constituting a universal

joint.

It is to be noted that although each leg of the manipulator 

has a spherical joint at only one end and a universal joint at 

the other end.
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A layout of a leg of the manipulator
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We analyze the inverse kinematics of one leg of the

manipulator. The Denavit-Hartenberg parameters of

the leg shown in this figure are given in table:

i ai bi αi

1 0 0 90°

2 0 0 90°

3 0 b3 0°

4 0 b4 (const) 90°

5 0 0 90°

6 0 b6(const) 0°
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It is apparent that the leg under study is a decoupled

manipulator. In view of the DH parameters of this

manipulator, we have:

𝐐1𝐐2 𝐚3 + 𝐚4 = 𝐜
where c denotes the position vector of the center C of

the spherical wrist and, since frames ℱ3 and ℱ4 of the

DH notation are related by a pure translation, Q3 = 1.

Upon equating the squares of the Euclidean norms of

both sides of the foregoing equation, we obtain:

𝐚3 + 𝐚4
𝟐 = 𝐜 𝟐
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Where, by virtue of the DH parameters of Table:

𝐚3 + 𝐚4
𝟐 = b3 + b4

2

Now, since both b3 and b4 are positive by

construction, we have:

b3 = 𝐜 − b4 > 0

Note that the remaining five joint variables of the leg

under study are not needed for purposes of inverse

kinematics, and hence, their calculation could be

skipped.
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We derive three scalar equations in two unknowns, θ1

and θ2, namely,
𝑏3 + 𝑏4 = 𝑥𝑐𝑐1 + 𝑦𝑐𝑠1

−(𝑏3 + 𝑏4 = 𝑧𝑐
0 = 𝑥𝑐𝑠1 − 𝑦𝑐𝑐1

in which ci and si stand for cosθi and sin θi, respectively

θ1 is derived as:      𝜃1 = tan
𝑦𝑐

𝑥𝑐

which yields a unique value of θ1 rather than the two lying

π radians apart, for the two coordinates xC and yC

determine the quadrant in which θ1 lies.



KINEMATICS OF PARALLEL 

MANIPULATORS
Once θ1 is known, θ2 is derived uniquely from the

remaining two equations through its cosine and sine

functions, i.e.,

𝑐2 =
𝑧𝑐

𝑏3 + 𝑏4
𝑠2 =

𝑥𝑐𝑐1 + 𝑦𝑐𝑠1
𝑏3 + 𝑏4

With the first three joint variables of this leg known, the

remaining ones, are calculated as described in foregoing

chapter.

Therefore, the inverse kinematics of each leg admits two

solutions, one for the first three variables and two for the

last three.



KINEMATICS OF PARALLEL 

MANIPULATORS
Moreover, since the only actuated joint is one of the

first three, which of the two wrist solutions is chosen

does not affect the value of b3, and hence, each

manipulator leg admits only one inverse kinematics

solution.

While the inverse kinematics of this leg is quite

straightforward, its direct kinematics is not. Below we

give an outline of the solution procedure for the

manipulator under study
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Equivalent simplified mechanism
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We can replace the pair of legs by a single leg of length li connected

to the base plate ℬ by a revolute joint with its axis along AiBi. The

resulting simplified structure is kinematically equivalent to the

original structure.

Now we introduce the coordinate frame ℱi with origin at the 

attachment point Oi of the ith leg with the base plate ℬ and the 

notation below:

For i=1,2,3

 Xi is directed from Ai to Bi

 Yi is chosen such that Zi is perpendicular to the plane of the 

hexagonal base and points upwards.

 Oi is set at the intersection of Xi and Yi and is designated the 

center of the revolute joint;
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Next, we locate the three vertices S1, S2 and S3 of the

triangular plate with position vectors stemming from

the center O of the hexagon. Furthermore, we need to

determine li and Oi.

Referring to Figures and letting ai and bi denote the

position vectors of points Ai and Bi respectively, we

have:

𝑑𝑖 = 𝐛i − 𝐚i
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𝑟𝑖 =
𝑑𝑖
2 + 𝑞𝑖𝑎

2 − 𝑞𝑖𝑏
2

2𝑑𝑖

𝑙𝑖 = 𝑞𝑖𝑎
2 − 𝑟𝑖

2

𝐮i =
𝐛i − 𝐚i
di

for i = 1,2,3, and hence ui is 

the unit vector directed 

from Ai to Bi.
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Moreover, the position of the origin Oi is given by 

vector oi, as indicated below:

𝐨i = 𝐚i + 𝑟𝑖𝐮i For i= 1,2,3

Furthermore, let si be the position vector of Si in

frame ℱi (Oi, Xi, Yi, Zi), then:

𝐬𝑖 =

0
−𝑙𝑖𝑐𝑜𝑠𝜙𝑖

𝑙𝑖𝑠𝑖𝑛𝜙𝑖

For i= 1,2,3
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Now a frame ℱ0 (O, X, Y, Z) is defined with origin at 

O and axes X and Y in the plane of the base hexagon, 

and related to Xi and Yi as depicted in figure. When 

expressed in frame ℱ0, si takes on the form:

𝐬i 0 = 𝐨i 0 + 𝐑i 0𝐬i For i=1,2,3

Where [Ri]0 is the matrix that rotate ℱ0 to frame ℱi,
expressed in and given as:

𝐑i 0 =
cos𝛼𝑖 −sin𝛼𝑖 0
sin𝛼𝑖 cos𝛼𝑖 0
0 0 1
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Referring to Figure:

cos𝛼𝑖 = 𝐮i ∙ 𝐢 = 𝑢ix
sin 𝛼𝑖 = 𝐮i ∙ 𝐣 = 𝑢iy
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After substitution we obtain:

𝐬i 0 = 𝐨i 0 + li

𝑢𝑖𝑥cos𝜙𝑖

−𝑢𝑖𝑦cos𝜙𝑖

sin𝜙𝑖

For i=1,2,3

Since the distances between the three vertices of the

triangular plate are fixed, the position vectors s1, s2,

and s3 must satisfy the constraints below:
𝐬2 − 𝐬1

2 = 𝑎1
2

𝐬3 − 𝐬2
2 = 𝑎2

2

𝐬1 − 𝐬3
2 = 𝑎3

2
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After expansion, equations take the forms:
𝐷1𝑐𝜙1 + 𝐷2𝑐𝜙2 + 𝐷3𝑐𝜙1𝑐𝜙2 + 𝐷4𝑠𝜙1𝑠𝜙2 + 𝐷5 = 0 (1)

𝐸1𝑐𝜙2 + 𝐸2𝑐𝜙3 + 𝐸3𝑐𝜙2𝑐𝜙3 + 𝐸4𝑠𝜙2𝑠𝜙3 + 𝐸5 (2)
𝐹1𝑐𝜙1 + 𝐹2𝑐𝜙3 + 𝐹3𝑐𝜙1𝑐𝜙3 + 𝐹4𝑠𝜙1𝑠𝜙3 + 𝐹5 = 0 (3)

where c(·) and s(·) stand for cos(·) and sin(·), respectively,

while coefficients 𝐷𝑖 , 𝐸𝑖 , 𝐹𝑖 1
5 functions of the data only

and bear the forms shown below:

𝐷1 = 2𝑙1 𝐨2 − 𝐨1
T𝐄𝐮𝟏

𝐷2 = 2𝑙2 𝐨2 − 𝐨1
T𝐄𝐮𝟐

𝐷3 = −2𝑙1𝑙2𝐮𝟐
𝐓𝐮𝟏
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𝐷5 = 𝐨𝟐

2 + 𝐨𝟏
2 − 2𝐨𝟏

𝐓𝐨𝟐 + 𝑙1
2 + 𝑙2

2 − 𝑎1
2

𝐸1 = 2𝑙2 𝐨𝟑 − 𝐨𝟐
𝑇𝐄𝐮𝟐

𝐸2 = −2𝑙3 𝐨𝟑 − 𝐨𝟐
𝑇𝐄𝐮𝟑

𝐸3 = −2𝑙2𝑙3𝐮𝟑
𝐓𝐮𝟐

𝐸4 = −2𝑙2𝑙3
𝐸5 = 𝐨𝟑

2 + 𝐨𝟏
2 − 2𝐨𝟑

𝐓𝐨𝟐 + 𝑙2
2 + 𝑙3

2 − 𝑎2
2

𝐹1 = 2𝑙1 𝐨𝟏 − 𝐨𝟑
𝑇𝐄𝐮𝟏

F2 = −2𝑙3 𝐨𝟏 − 𝐨𝟑
𝑇𝐄𝐮𝟑

𝐹3 = −2𝑙1𝑙3𝐮𝟑
𝐓𝐮𝟏

𝐹4 = −2𝑙1𝑙3
𝐹5 = 𝐨𝟑

2 + 𝐨𝟏
2 − 2𝐨𝟑

𝐓𝐨𝟏 + 𝑙1
2 + 𝑙3

2 − 𝑎3
2
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Our next step is to reduce the foregoing system of three

equations in three unknowns to two equations in two

unknowns, and hence, obtain two contours in the plane of

two of the three unknowns, the desired solutions being

determined as the intersections of the two contours.

Since the first equation is already free of Φ3, all we have to

do is eliminate it from the other equations.

The resulting equations take on the forms:

𝑘1𝜏3
2 + 𝑘2𝜏3 + 𝑘3 = 0

𝑚1𝜏3
2 +𝑚2𝜏3 +𝑚3 = 0
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Where k1, k2, and k3 are linear combinations of s2, c

2, and 1. Likewise, m1, m2, and m3 are linear

combinations of s1, c1 and 1, namely,

𝑘1 = 𝐸1𝑐𝜙2 − 𝐸2 − 𝐸3𝑐𝜙2 + 𝐸5
𝑘2 = 2𝐸4𝑠𝜙2

𝑘3 = 𝐸1𝑐𝜙2 + 𝐸2 + 𝐸3𝑐𝜙2 + 𝐸5
𝑚1 = 𝐹1𝑐𝜙1 − 𝐹2 − 𝐹3𝑐𝜙1 + 𝐹5

𝑚2 = 2𝐹4𝑠𝜙1

𝑚3 = 𝐹1𝑐𝜙1 + 𝐹2 + 𝐹3𝑐𝜙1 + 𝐹5
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We proceed now by multiplying each of the above equations

by τ3 to obtain two more equations, namely.

𝑘1𝜏3
2 + 𝑘2𝜏3

2 + 𝑘3𝜏3 = 0
𝑚1𝜏3

2 +𝑚2𝜏3
2 +𝑚3𝜏3 = 0

Further, we write equations in homogeneous form as:
𝚽𝛕𝟑 = 𝟎

with the 4 x 4 matrix Φ and the 4-dimensional vector τ3

defined as:

𝚽 =

𝑘1 𝑘2 𝑘3 0
𝑚1 𝑚2 𝑚3 0
0 𝑘1 𝑘2 𝑘3
0 𝑚1 𝑚2 𝑚3

𝛕𝟑 =

𝜏3
3

𝜏3
2

𝜏3
1
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Moreover, in view of the form of vector τ3, we are interested

only in nontrivial solutions, which exist only if det(Φ)

vanishes. We thus have the condition

det 𝚽 = 0 (4)
Equations (1) and (4) form a system of two equations in two

unknowns 1 and 2 . Moreover for 𝜙3:
𝐸4𝑠𝜙2 𝐸2 + 𝐸3𝑐𝜙2

𝐹4𝑠𝜙1 𝐹2 + 𝐹3𝑐𝜙1

𝑠𝜙3

𝑐𝜙3
=

−𝐸1𝑐𝜙2 − 𝐸5
−𝐹1𝑐𝜙1 − 𝐹5

Knowing the angles 1 , 2 and 3 allows us to determine the

position vectors of the three vertices of the mobile plate s1, s2

and s3. Since three points define a plane, the pose of the EE is

uniquely determined by the positions of its three vertices
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We derive the direct kinematics of a manipulator analyzed

by Nanua et al. (1990). This is a platform manipulator

whose base plate has six vertices with coordinates expressed

with respect to the fixed reference frame ℱ0 as given below,

with all data given in meters:

A1 = (-2.9,  -0.9), B1 =(-1.2,  3.0)

A2= ( 2.5,    4.1), B2 =( 3.2,  1.0)

A3 = ( 1.3,  -2.3), B3 = (-1.2,-3.7)

The dimensions of the movable triangular plate are, in turn,

a1 = 2.0, a2 =2.0, a3 = 3.0
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Determie all possible poses of the moving plate for the six

leg-lenghts given as:

q1a = 5.0, q2a =5.5, q3a = 5.7

q1b = 4.5, q2b =5.0, q3b = 5.5

SOLUTION: After substitution of the given numerical

values:
61.848 − 36.9561𝑐1 − 47.2376𝑐2 + 33.603𝑐1𝑐2 − 41.6822𝑠1𝑠2 = 0

−28.5721 + 48.6806𝑐1 − 20.7097𝑐1
2 + 68.7942𝑐2 − 100.811𝑐1𝑐2

+ 35.9634𝑐1
2𝑐2 − 41.4096𝑐2

2 + 50.8539𝑐1𝑐2
2 − 15.613𝑐1

2𝑐2
2

− 52.9786𝑠1
2 + 67.6522𝑐2𝑠1

2 − 13.2765𝑐2
2𝑠1

2 + 74.1623𝑠1𝑠2
− 25.6617𝑐1𝑠1𝑠2 − 67.953𝑐2𝑠1𝑠2 + 33.9241𝑐1𝑐2𝑠1𝑠2 − 13.202𝑠2

2

− 3.75189𝑐1𝑠2
2 + 6.13542𝑐1

2𝑠2
2 = 0
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Reduce the two equations above, to a single monovariate

polynomial equation.

SOLUTION: 

We obtain two polynomial equations in τ1, namely,

𝐺1𝜏1
4 + 𝐺2𝜏1

3 + 𝐺3𝜏1
2 + 𝐺4𝜏1 + 𝐺5 = 0

𝐻1𝜏1
2 +𝐻2𝜏1 + 𝐻3 = 0

No . 1 (rad) 2 (rad) 3 (rad)

1 0.8335 0.5399 0.8528

2 1.5344 0.5107 0.2712

3 -0.8335 -0.5399 -0.8528

4 -0.5107 -0.5107 -0.2712
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Where:

𝐺1 = 𝐾1𝜏2
4 + 𝐾2𝜏2

2 + 𝐾3
𝐺2 = 𝐾4𝜏2

3 + 𝐾5𝜏2
𝐺3 = 𝐾6𝜏2

4 + 𝐾7𝜏2
2 + 𝐾8

𝐺4 = 𝐾9𝜏2
3 + 𝐾10𝜏2

𝐺5 = 𝐾11𝜏2
4 + 𝐾12𝜏2

2 + 𝐾13
𝐻1 = 𝐿1𝜏2

2 + 𝐿2
𝐻2 = 𝐿3𝜏2
𝐻3 = 𝐿4𝜏2

2 + 𝐿5
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Multiplying the first equation by H1 and the second by

G1τ1 and subtract the two equations thus resulting, which

leads to a cubic equation in τ1 , namely,
𝐺2𝐻1 − 𝐺2𝐻2 𝜏1

3 + 𝐺3𝐻1 − 𝐺1𝐻3 𝜏1
2 + 𝐺4𝐻1𝜏1 + 𝐺5𝐻1 = 0

Likewise multiplying the first by H1 τ1 and the second

one by G1 τ1
3+G2 τ1

2 and the equations thus resulting are

subtracted from each other, one more cubic equation in

τ1 is obtaines :
𝐺1𝐻3 − 𝐺3𝐻1 𝜏1

3 + 𝐺4𝐻1 + 𝐺3𝐻2 − 𝐺2𝐻3 𝜏1
2

+ 𝐺5𝐻1 + 𝐺4𝐻2 𝜏1 + 𝐺5𝐻2 = 0
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Moreover, multiplying the second equation by τ1, a

third cubic equation in τ1 can be derived:

𝐻1𝜏1
3 +𝐻2𝜏1

2 +𝐻3𝜏1 = 0

Now the foregoing equations constitute a

homogeneous linea system of four equations in the

firt four powers of τ1 which can be cast in the form:

𝐇𝛕𝟏 = 𝟎

Where 𝝉𝟏 = 𝜏1
3 𝜏1

2 𝜏1 1
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𝐇 =

𝐺2𝐻1 − 𝐺2𝐻2 𝐺3𝐻1 − 𝐺1𝐻3 𝐺4𝐻1 𝐺5𝐻1

𝐺3𝐻1 − 𝐺1𝐻3 𝐺3𝐻2 − 𝐺2𝐻3 + 𝐺4𝐻1 𝐺4𝐻2 + 𝐺5𝐻1 𝐺5𝐻2

𝐻1 𝐻2 𝐻3 0
0 𝐻1 𝐻2 𝐻3

To admit a nontrivial solution, the determinant of its coefficient

matrix must vanish:

det (H)=0

and this can be expanded in the form:

det(H) = H11 + H22 + H33
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Where:

Δ2 = 𝑑𝑒𝑡

𝐺2𝐻1 − 𝐺2𝐻2 𝐺4𝐻1 𝐺5𝐻1

𝐺3𝐻1 − 𝐺1𝐻3 𝐺4𝐻2 + 𝐺5𝐻1 𝐺5𝐻2

𝐻1 𝐻2 0

Δ2 = 𝑑𝑒𝑡

𝐺2𝐻1 − 𝐺2𝐻2 𝐺3𝐻1 − 𝐺1𝐻3 𝐺5𝐻1

𝐺3𝐻1 − 𝐺1𝐻3 𝐺3𝐻2 − 𝐺2𝐻3 + 𝐺4𝐻1 𝐺5𝐻2

𝐻1 𝐻2 0

Δ2 = 𝑑𝑒𝑡

𝐺2𝐻1 − 𝐺1𝐻2 𝐺3𝐻1 − 𝐺1𝐻3 𝐺4𝐻1

𝐺3𝐻1 − 𝐺1𝐻3 𝐺3𝐻2 − 𝐺2𝐻3 + 𝐺4𝐻1 𝐺4𝐻2 + 𝐺5𝐻1

𝐻1 𝐻2 𝐻3



VELOCITY ANALYSES OF 

PARALLEL MANIPULATORS
The inverse velocity analysis of this manipulator consists in

determining the six rates of the active joints,  𝑏𝑘 1

6
given the

twist t of the moving platform. The velocity analysis of a

typical leg leads to a relation of the form of equation

namely,

𝐉𝐽  𝜽𝐽 = 𝐭𝐽 J= I,II,…, IV

Where JJ is the Jacobian of the Jth leg, is the 6-d joint-rate

vector  𝜽𝐽of the same leg and tj is the twist moving platform

ℳ with its operation point defined as the point CJ
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We thus have:

𝐉𝐉 =
𝐞𝟏 𝐞𝟐 𝟎 𝐞𝟒 𝐞𝟓 𝐞𝟔

𝑏34𝐞𝟏 × 𝐞𝟑 𝑏34𝐞𝟐 × 𝐞𝟑 𝐞𝟑 𝟎 𝟎 𝟎

𝐭𝐉 =
𝛚
 𝐜𝐉
, 𝑏34 = 𝑏3 + 𝑏4

it is apparent that

 𝐜𝐉 =  𝐩 − 𝛚 × 𝐫𝐉

with rJ defined as the vector directed from CJ to the

operation point P of the moving platform.
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PARALLEL MANIPULATORS
Multiplying the left side of the equation by IJ

T

Where: 𝐈J
T = [ 𝟎T 𝐞3

T]

We obtain:

𝐈J
T 𝐉𝐽  𝜽𝐽 =  𝑏𝐽

On the other hand we have:

𝐈J
T𝐭J = 𝐞J

T  𝐜J

Upon equating the right-hand sides of the foregoing

equations we have:  𝒃𝑱 = 𝐞𝑱
𝑻  𝐜𝑱



VELOCITY ANALYSES OF 

PARALLEL MANIPULATORS
We obtain the relations between the actuated joint rates

and the twist of the moving platform, namely

 𝑏𝑗 = (𝐞J× 𝐭j)
𝑇 𝐞J

T 𝜔
 𝐜
= 𝐤𝐽

𝑇𝐭

We have the desired relation between the vector of

actuated joint rates and the twist of the moving platform,

namely.
 𝐛 = 𝐊𝐭

With the 6-d vectors b and t defined as the vector of joint

variables and the twist of the platform at the operation

point, respectively. Moreover, the 6 x 6 matrix K is the

Jacobian of the manipulator at hand.



VELOCITY ANALYSES OF 

PARALLEL MANIPULATORS
These quantities are displayed below:

𝐛 =

𝑏𝐼
𝑏𝐼𝐼
⋮
𝑏𝐼𝑉

𝐭 =
𝜔
 𝐩 𝐊 =

𝐞I × 𝐫I
T 𝐞I

T

𝐞II × 𝐫II
T

⋮
𝐞VI × 𝐫VI

T

𝐞II
T

⋮
𝐞VI
T



ACCELLERATION ANALYSES OF 

PARALLEL MANIPULATORS
The acceleration analysis of the same leg is

straightforward. Indeed, upon differentiation of both

sides of equation with respect to time, one obtains
 𝐛 = 𝐊  𝐭 +  𝐊𝐭

Where  𝐊 takes the form:

 𝐊 =

 𝐮𝐼
𝑇  𝐞𝐼

𝑇

 𝐮𝐼𝐼
𝑇  𝐞𝐼𝐼

𝑇

⋮
𝐮𝑉𝐼
𝑇

⋮
 𝐞𝑉𝐼
𝑇



ACCELLERATION ANALYSES OF 

PARALLEL MANIPULATORS
uJ is defined as: 𝐮J = 𝐞J × 𝐫𝐉

Therefore:  𝐮J =  𝐞J × 𝐫J + 𝐞J ×  𝐫J

Now since the vector rj are fixed to the moving platform, their

time-derivatives are simply given by:

 𝐫𝐉 = 𝛚× 𝐫𝐉

On the other hand, vector ej is directed along the log axis, and 

so, its time-derivative is given by:

 𝛚J = 𝛚J × 𝐞J

with ωJ defined as the angular velocity of the third leg link: 

𝝎𝐽 =  𝜃1𝒆1 +  𝜃2𝒆2 𝐽



ACCELLERATION ANALYSES OF 

PARALLEL MANIPULATORS
In order to simplify the notation, we start by defining

𝐟𝐉 = 𝐞1 J 𝐠J = 𝐞2 J

Now we write the second vector of the equation

𝐉𝐽  𝜽𝐽 = 𝐭𝐽using the foregoing definitions, which yields:

(  θ1)J𝐟𝐉 × bJ + b4 𝐞j + (  θ2)J𝐠J × bJ + b4 𝐞j +  bJ𝐞j =  𝐜J

where b4 is the same for all legs, since all have

identical architectures. Now we can eliminate

(  θ2)Jfrom the foregoing equation by dot-multiplying

its two sides by g j , thereby producing



ACCELLERATION ANALYSES OF 

PARALLEL MANIPULATORS

(  𝜃1)J𝐠𝐉 × 𝐟J ∙ 𝑏𝐽 + 𝑏4 𝐞j + 𝐠J
T 𝐞j𝐞J

T  𝐜J = 𝐠T  𝐜J

Now it is a simple matter to solve for (  𝜃1)J from the 

above equation, which yields:

(  𝜃1)J=
𝑔𝐽
𝑇 1 − 𝑒𝐽𝑒𝐽

𝑇  𝑐𝐽

∆𝐽

Where: ∆𝐽= 𝑏𝐽 + 𝑏4 𝐞j × 𝐟J ∙ 𝐠𝐉



ACCELLERATION ANALYSES OF 

PARALLEL MANIPULATORS
Moreover, we can obtain the above expression for

(  𝜃1)J in terms of the platform twist by recalling

equation which is reproduced below in a more

suitable form for quick reference:

 𝐜J = 𝐂J𝐭

where t is the twist of the platform, the 3 x 6 matrix

Cj being defined as:

𝐂J = [𝐑j 𝟏]

In which RJ is the cross-product matrix of rJ



ACCELLERATION ANALYSES OF 

PARALLEL MANIPULATORS
Therefore the expressione sought for (  𝜃1)J takes the 

form:

(  𝜃1)J=
1

∆𝐽
𝐠𝐽
𝑇 1 − 𝐞J𝐞J

T 𝐂J𝐭

A similar procedure can be followed to find (  𝜃2)Jthe 

final result being

(  𝜃2)J=
1

∆𝐽
𝒇𝐽
𝑇 1 − 𝐞J𝐞J

T 𝐂J𝐭



PLANAR AND SPHERICAL 

MANIPULATORS
The velocity analysis of the planar and spherical

parallel manipulators of figures are outlined below



PLANAR MANIPULATORS

𝐉𝐽  𝜽𝐽 = 𝐭𝐽 J= I,II, III

Where JJ is the Jacobian matrix of this leg while  𝜽𝐽 is the 

3-D vectore of joint rates of this leg:

𝐽𝐽 =
1 1 1

𝐸𝑟𝐽1 𝐸𝑟𝐽2 𝐸𝑟𝐽3
 𝜃𝐽 =

 𝜃𝐽1
 𝜃𝐽2
 𝜃𝐽3

We multiply both sides of the said equation by a 3-D 

vector nj perpendicular to the second and the third 

columns of JJ. 



PLANAR MANIPULATORS

This vector can be most easily determined as the cross product of 

those two columns, namely, as

𝐧 = 𝐣J2 × 𝐣J3 =
−𝐫J2

T𝐄𝐫J3
𝐫J2 − 𝐫J3

Upon multiplication of both side of the equation by nj
T, we obtain:

−𝐫J2𝐄𝐫j3 + 𝐫J2 − 𝐫J3
T
𝐄𝐫J1  𝜃𝐽1 = − 𝐫J2𝐄𝐫J3 𝜔 + 𝐫J2 − 𝐫J3

T
 𝐜

And hence we can solve directly reriving:

 𝜃𝐽1 =
− 𝐫J2𝐄𝐫J3 𝜔+ 𝐫J2−𝐫J3

T
 𝐜

−𝐫J2𝐄𝐫j3+ 𝐫J2−𝐫J3
T
𝐄𝐫J1



PLANAR MANIPULATORS

The foregoing equation can be written in the form:

𝑗𝐽  𝜃𝐽1 = 𝐤J
T𝐭 J=I,II, III

With jJ and kJ defined:

𝑗𝐽 = 𝐫J2 − 𝐫J3
T
𝐄𝐫J1 − 𝐫J2𝐄𝐫j3

𝐤J = [𝐫J2
T𝐄𝐫J3 𝐫J2 − 𝐫J3

T
]
T

If we further define:
 𝛉 = [  𝜃𝐼1  𝜃𝐼𝐼2  𝜃𝐼𝐼𝐼3]

And assemble all three foregoing joint-rate-twist relation we

obtain: 𝐉  𝛉 = 𝐊𝐭



PLANAR MANIPULATORS

𝐉  𝛉 = 𝐊𝐭

Where J and K are the two manipulator Jacobians

defined as:

𝐉 = diag 𝑗I, 𝑗II, 𝑗III , 𝐊 =

𝐤I
T

𝐤II
T

𝐤III
T

Expressions for the joint accelerations can be readily 

derived by differentiation of the foregoing expressions 

with respect to time.



SPHERICAL MANIPULATOR
The velocity analysis of the spherical parallel

manipulator can be accomplished similarly. Thus, the

velocity relations of the Jth leg take on the form:

𝐉J  𝛉J = 𝛚 J=I,II,III

Where the Jacobian of the Jth leg JJ is defined as:

𝐽𝐽 = 𝐞𝐽1 𝐞𝐽2 𝐞𝐽3

While the joint-rate vector of the Jth  𝛉Jleg is defined

exactly as in the planar case analyzed above.

An obvious definition of this vector is, then:

𝐧J = 𝐞J2 × 𝐞J3



SPHERICAL MANIPULATOR
The desired joint-rate relation is thus readily derived

as:

𝑗𝐽  𝜃𝐽1 = 𝐤J
T𝛚

where jJ and kJ are now defined as:

𝑗𝐽 = 𝐞J1 × 𝐞J2 ∙ 𝐞J3
𝐤J = 𝐞J2 × 𝐞J3

The accelerations of the actuated joints can be

derived, again, by differentiation of the foregoing

expressions. We can then say that in general, parallel

manipulators, as opposed to serial ones, have two

Jacobian matrices.


